If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2-9d=0
a = 9; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·9·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*9}=\frac{0}{18} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*9}=\frac{18}{18} =1 $
| y=10(1+0.5)^5 | | -2(x-7)=x | | -61+5n=56n | | 14h-19=16h+17 | | 14h−19=16h+17 | | -18-13j+9=-3j-4 | | 0.8m=7.2 | | w+49.8+13.3=59.6 | | 19d-13=18d | | 15c=14c+5 | | 3+x/2=10x | | 56=7x-6 | | x-11.7=28.9 | | -4-10k=-9k-10 | | x-8=79 | | 2x+15=34 | | -2(x-7)=5(x+2) | | 20b=1/2 | | 2x-8x=-4 | | -2p+8-10p=-10-9p | | 14+5(x+3)-7x=0 | | 13=20+v | | -19g+15=14g-5 | | (-1/2)n=-36 | | 5-2r=9r-6 | | 14+5(x=3)-7x | | -2p+8−10p=-10−9p | | (-1/2)n=3 | | 10z+13=-13+6z-9z | | 2x^2-65x^2+784=0 | | (1/2)n=-3 | | (1/2)n=-36 |